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THE EFFECTIVE STRESS CONCEPT

by

Robert L. Schiffman

Geotechnical engineering is based upon the concept of effective
stresses. This concept is partly geometric and partly physical. It
serves to isolate the deformation producing mechanisms which occur
when a geologic material is subjected to a disturbance (Schiffman,
1970).

This report reviews current theories of effective stress.
Relationships between competing and complementary theories are analyzed.

THE MIXTURE

The mixture (interacting continua) is a porous system consisting
of (m) interacting continua (c(s)), where (s) takes on values of
(1, 2, ..., m). Each continuum (c(s)) is in relative motion with
respect to a fixed coordinate system (Atkin and Craine, 1976a, 1976b).
The elementary bulk volume of the porous mass (8V) is composed of
representative component volumes (6V(S)). Thus

m
sV =Z svle) (1)

s=1

The volume fraction (n(s)) of each continuum is defined as

(e)
a8 ST (2)



If the mixture is defined as containing two phases, a solid (1),
and voids (2), the porosity of the mixture is defined as

(2)
n = %‘_ (3)

The state of stress of the mixture can be defined in several ways
depending on the reference volumes used.

Force Components

A set of boundary forces and/or displacements applied to the bulk
mixture will produce an internal relative force vector point function
(sFi). This total force is the sum of the component forces for each
continuum (sFés)) such that

m
6F , = Z aF§s) . (4)
s=1

The tractions and stress components are defined by the relation-
ship between the elementary forces and elementary volumes.

Stress Components

The total traction of the mixture (T.) is defined in terms of the
total force per unit of total surface of the mixture. Thus

21im sF.

T, =650 gg’i , (5)

where (8S) is the surface cut across the total elementary volume (&V).
It is noted that in this treatment the elementary surface (8S) is used
interchangeably with the elementary volume (sV).



The total stress tensor (rij) represents the components of the
total traction. Thus

T. = n.t.. (6)

where (nj) is the unit vector normal to the surface (GS).
A component traction (T§S)) can be defined as

Lim aF(.S)
7

o) il i ()

and a component stress tensor (Egi)) is then

() _ . ()
Tis- sl (8)

njoij
The stress tensor (6£§)) is called the "partial stress" in the
mixture theory literature (Atkin and Craine, 1976a). The soil mechanics
literature calls this entity the "intergranular stress" since it is
generally used to describe the stresses acting at the mineral contacts
in a soil mass (Skempton, 1961).

The total and partial stresses are related by virtue of equation
(4) by

(o)
= aqg i (9)

s=1

T, .
d

The component tractions can be defined in terms of their own
surface areas. Thus a traction (tés)) can be defined as

o) e
s) _ 8 7



The companion stress tensor is
(s) . (s)

This stress is referred to as a "pore stress" since it is used to
describe the state of stress of the interpore material in a soil or
rock mass.

The various stress components can be related by

67(:3.) = n(s)cr?(:j.) . (12)
and then
m
Ty =Z n(s)cg) . (13)
s=1

These are purely geometric relationships, which must be modified and
interpreted in order to describe the behavior of a complete porous soil
or rock mass.

Strain Components

The total mass density of the mixture is (p). The partial densi-
ties (p(s)) are the masses of the (s) constituents per unit of the mass
volume. Thus

m
P =Z p(s) . (14)

s=1

The partial strain tensors, (eéj)) if infinitesimal strain theory
is assumed, are (Steel, 1967)
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where (ués)) are the partial displacement vectors and (xés)) are the
partial length vectors. It is noted that the theory of mixtures

assumes that all the interacting continua occupy the same space at the
same time. Thus, for purposesof strain definition, there need not be
a positional distinction between phases.

The partial dilatation (e'®)) is defined asl
o(s) = pés)(l-e(s)) , (16)
where (pés)) is the partial equilibrium mass density.

Stress-Strain Relationships

The stress-strain relationships can be obtained directly by the
Helmholtz free energy relationships. If the mixture contains two
isotropic elastic solids, deforming under isothermal conditions, the
stress-strain relationships are (Steel, 1968).

ai;) = A(l)e(l)aij + 211(1)97(:;-) + XE(Z)sij + 21-137(/;) s (17a)
6§%) = A(z)e(z)s.. + Zu(z)e(%) + ie(l)s.. + ZGeg{) R (17b)
J d 1J 1J 1J

where (x(l)), (u(l)), (A(z)) and (u(z)) are Lamé's constants for
materials (1) and (2), respectively, when the materials are separated.
The coefficients (X) and (n)represent the interaction between the

materials.

11t is noted that a different definition of the partial dilation
(e(s))is given elsewhere (Garg and Nur, 1973). This definiticon bases
the dilation upon the current partial mass density (p(s)) instead of the
initial mass density (pos)) as given by equation (16).
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It is noted that these stress-strain relationships assume that
there are no partial initial stresses.

EFFECTIVE AND INTERGRANULAR STRESSES

In the discussion which follows it will be assumed that the porous
mass consists of two phases, a solid (or granular) phase and a pore
phase. Furthermore, the pores will be saturated with a Tiquid. The
sign convention will be that of the theory of elasticity in which
tension will carry a positive sign. The liquid will be assumed to
sustain no shear stresses. The 1ntergranu1ar stress relating to the
solid phase (7) will be (aij)' The pore stress relating to the pore
phase (2) will be (o). In conformity with the sign convention the pore

pressure (p) is
o= =P, (18a)
and
G=-np. (18b)
Using the above sign convention and notation the relationships
between total, intergranular, and pore stresses will be developed.

The concept of effective stress will also be developed.

Intergranular Stress

Equation (9), for the fluid saturated two-phase medium is
T..=0..+ 08.. (9is)

in terms of the partial stress, or



Ti5 T O44C npsij R (19)

in terms of the intergranular stress for the mineral skeleton and the
pore pressure of the interpore Tiquid.

Effective Stress

The concept of an effective stress is defined (Terzaghi, '1942) as
follows:

"...the compressive stress in a saturated soil
consists of two parts with very different mechanical
effects. One part which is equal to the pressure
in the water produces neither a measurable compres-
sion nor a measurable increase of the shearing
resistance. This part is called the neutral stress

(p)...."

"The second part (c!.) of the total stress (r..)
(2 1d

is equal to the difference between the total stress
and the neutral stress (p). This second part

% T Tag POy

ijs called the effective stress, because it repre-
sents that part of the total stress which produces
measurable effects such as compaction or an increase
of the shearing resistance."?

(20)

It is noted that equations (19) and (20) differ by a factor (n).
This implies that the intergranular stress (aij) is not the effective
stress (o%.). Furthermore, the above definition assumes an incompres-
sible pore fluid. Al1 of these factors can be taken into considera-
tion by a formulation of the effective stress equation (Schiffman
1970)

2This definition has been editorialized to conform to the notation
and sign convention of this paper.



! =
0L = T + upaij R (21a)
where (o) is defined as a "porous medium interaction coefficient", with
a range of values '

n<a<l . (21b)

There are a variety of mutually compatible interpretations of the
coefficient (a).

COMPRESSION OF A POROUS MASS

Assume that the porous mass consists of an isotropic, elastic
solid and a compressible, Newtonian fluid. Further, assume that the
mass is subjected to a set of boundary forces which instigate a defor-
mation. Energy arguments lead to the following relationship between
the intergranular stresses and the strain of the solid and fluid por-
tions of the porous mass (Biot, 1956; Biot and Willis, 1957)

g..=Res..+ 2Ne.. + Qes.. , (22a)
N 1J ] 1J

o =Qe+Re , (22b)

where (A), (N), (Q), (R) are elastic constants of the porous mass,
(eij) is the strain of the solid portion of the porous medium, (e)
is the dilatation of the porous medium and (e) is the dilatation of the
pore fluid.
Equations (22) are fully compatible with equations (17) recognizing

that (A) and (N) are Lamé's constants of the solid, (R) is the bulk
modulus of the fluid, and (Q) is the interaction bulk modulus.

It is usually assumed that the soil and rock grains in a porous
medium are by themselves incompressible. The deformation of the "solid"



is thus the deformation of the porous skeleton which encompasses the
motions of the mineral grains and the rearrangement of grains from
one state of packing to another. ‘

This interpretation is fully consistent with the theory of mix-
tures in which the porous mass is treated as a continuum.

The effective stress principle as stated by Terzaghi (1942)
implies that, at least for a soil saturated with an incompres-
sible fluid, the effective stresses are the deformation producing
entities. Thus the isotropic, elastic stress-strain relationship is

= A'es,. + 2u'e,.
o A eszg 2u e (23)

where (1') and (u') are the effective Lamé's constants.

Relationship Between Effective and Intergranular Stresses

Repeating equations (19) and (2la) provides

Tii T 944" npsij R (19)

T o%j - apﬁij . (21a pis)

Solving for the effective stress by eliminating the total stress
results in

0p; = 045 " (n"a)péij . - (24)

It is noted that when (a = n), the effective stress is the inter-
granular stress.

Relationship Between Elastic Constants

Substituting the stress-strain relationships (22) into equation
(24) results in



G%j = [A +Q (1-—%)} esij + 2Neij + [Q-*R <1-—%)] eaij . (25)

Comparing equations (23) and (25)

At = A - %2- , (26a)
a=n[Q;R], (26b)
p' = N (26c)

The stress-strain relationsp then become

= ' ok o

T Auesij + 2u & " 7 (e e)aij , (27a)

_ R
p= ~—-[n(e-e) - ae] ’ (27b)

02

where
2
A=A'+9—-R—, (27¢)
u nz

is the undrained Lamé constant.
Performing jacketed and unjacketed tests on the porous mass results
in

u=1--g—, (28)

where (B) is the unjacketed compressibility of the solid material and
(8) is the jacketed compressibility of the porous mass. This relation-
ship is fully in accordance with the relationship developed by Skempton
(1961).
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CONCEPTS OF EFFECTIVE STRESS
The discussion above established the effective stress equation as
Oy ='Tij + apaij . (21a)

with various interpretations of the coefficient (a).

Compressibility Interpretation

Several authors (Biot and Willis, 1957; Geertsma, 1957; Skempton,
1961; Nur and Byerlee, 1971) have shown that when the porous mass is
assumed to be an isotropic, elastic medium, the coefficient (o) is
governed by equation (28). This relationship is fully consistent with
mixture theohy and thus is solidly based in continuum mechanics. A
minor modification has suggested the form (Suklje, 1969).

o =1-28 (29)

This interpretation of (a) provides a range from zero, for a non-
porous mass, to unity for a very porous mass or a mass in which the
fluid is incompressible. Its value will generally be close to unity
for most materials due to the relative compressibilities of particles
and mass.

Schiffman (1970) suggested that (a) ranges from the porosity (n)
to unity. This geometric interpretation is fully in accord with other
interpretations since the compressibility ratio (8/8) is directly
related to the porosity. A nonporous mass will have a porosity of
Zero.

Some question has been raised as to the applicability of the
effective stress equation (2la) in a nonlinear regime (Garg and Nur,
1973; Morita and Gray, 1980a, 1980b). There is reason to believe that
the relationships developed above will hold for incremental linear
behavior within a totality of nonlinear response.
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Shear Strength Interpretations

Skempton (1961) has proposed that for shear strength

a=1-%;n—a¢“.i, (30)

where (a) is the area of contact between particles per unit gross area
of the material, (¢) is the angle of intrinsic friction of the solid
and (4¢') is the effective angle of internal friction of the mass. It
was concluded that (a) is effectiVely unity for soil, but may not be so
when the material is saturated rock or concrete. In these cases,
however, the assumption that (a = 1) is a reasonable first approxima-
tion.

A General Concept

A general principle of effective stress which has been postulated
for partly saturated soils (Blight, 1965) is:

"...the effective stress is that function of
total stress and pore pressure which controls the
mechanical effects of a change in stress.... The
principle of effective stress is the assertion
that such a function exists with parameters which
are determinate under a given set of conditions.”

This can be formulated as

67',j = T7/J + f(p) s (31)

where the function (f) relates to (a) and any of the nonlinearities
involved.
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